49 research outputs found

    The biology and ecology of the liverwort Cephaloziella varians in Antarctica

    Get PDF
    The biology and ecology of Cephaloziella varians, the most widespread and abundant liverwort in Antarctica, are reviewed. A description of the species is given, together with information on its geographical distribution, reproduction, habitats, associated organisms and responses to environmental stresses. Characteristics of its photosynthetic physiology are also presented, including data on oxygen evolution rates and chlorophyll a fluorescence parameters. Substratum and tissue chemistry, water relations and pigments are discussed, along with recent data demonstrating that the dark pigment in the apical leaves of C. varians is the anthocyanidin riccionidin A. Recent studies showing that the ericoid mycorrhizal symbiont Rhizoscyphus ericae is present in the tissues of the plant at a wide range of locations in the maritime and sub-Antarctic are also described. It is evident, from the literature reviewed, that C. varians has several adaptations that enable it to survive in the Antarctic biome, explaining its survival at higher latitudes than any other hepatic. The species' major adaptations include the synthesis of riccionidin A in apical leaves, enabling efficient heat absorption and protection from photoinhibition, and the presence in stems and rhizoids of fungal hyphae, which are potentially beneficial to the hepatic's nutrition and possibly also synthesize cryoprotectants

    Differential acquisition of amino acid and peptide enantiomers within the soil microbial community and its implications for carbon and nitrogen cycling in soil

    Get PDF
    l-isomeric amino acids and oligopeptides are thought to represent a key nitrogen (N) source for plants and soil microorganisms, bypassing the need to take up inorganic N, whilst self-cycling of d-enantiomers within peptidoglycan-containing bacteria may provide a further short circuit within the N cycle. Here we use stable isotope profiling (SIP) to identify the fate of organic N within soil microbial communities. We followed the incorporation of 13C-labelled d- or l-labelled amino acids/peptides into phospholipid fatty acids (PLFAs). l-alanine and its peptides were taken up more rapidly than d-enantiomers by Gram-positive bacteria with 13C incorporation being predominantly into anteiso- and iso-fatty acids typically associated with Gram-positive bacteria. d-enantiomer uptake was found not to differ significantly between the microbial groups, providing little support for the view that soil bacteria may self-cycle d-forms of amino acids and peptides. There was no consistent association between peptide chain length and incorporation. The concentrations of l- and d-isomeric amino acids in soil solution were 866 nM and 72 nM, respectively. We conclude that Gram-positive bacteria appear to be the primary competitors for l-enantiomeric forms of amino acids and their peptides, but that both d- and l-enantiomers are available N and C sources for bacteria and fungi

    Predicting climate change impacts on maritime Antarctic soils: A space-for-time substitution study

    Get PDF
    We report a space-for-time substitution study predicting the impacts of climate change on vegetated maritime Antarctic soils. Analyses of soils from under Deschampsia antarctica sampled from three islands along a 2,200 km climatic gradient indicated that those from sub-Antarctica had higher moisture, organic matter and carbon (C) concentrations, more depleted δ13C values, lower concentrations of the fungal biomarker ergosterol and higher concentrations of bacterial PLFA biomarkers and plant wax n-alkane biomarkers than those from maritime Antarctica. Shallow soils (2 cm depth) were wetter, and had higher concentrations of organic matter, ergosterol and bacterial PLFAs, than deeper soils (4 cm and 8 cm depths). Correlative analyses indicated that factors associated with climate change (increased soil moisture, C and organic matter concentrations, and depleted δ13C contents) are likely to give rise to increases in Gram negative bacteria, and decreases in Gram positive bacteria and fungi, in maritime Antarctic soils. Bomb-14C analyses indicated that sub-Antarctic soils at all depths contained significant amounts of modern 14C (C fixed from the atmosphere post c. 1955), whereas modern 14C was restricted to depths of 2 cm and 4 cm in maritime Antarctica. The oldest C (c. 1,745 years BP) was present in the southernmost soil. The higher nitrogen (N) concentrations and δ15N values recorded in the southernmost soil were attributed to N inputs from bird guano. Based on these analyses, we conclude that 5–8 °C rises in air temperature, together with associated increases in precipitation, are likely to have substantial impacts on maritime Antarctic soils, but that, at the rates of climate warming predicted under moderate greenhouse gas emission scenarios, these impacts are likely to take at least a century to manifest themselves

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct

    Arbuscular mycorrhizas are present on Spitsbergen

    Get PDF
    A previous study of 76 plant species on Spitsbergen in the High Arctic concluded that structures resembling arbuscular mycorrhizas were absent from roots. Here, we report a survey examining the roots of 13 grass and forb species collected from 12 sites on the island for arbuscular mycorrhizal (AM) colonisation. Of the 102 individuals collected, we recorded AM endophytes in the roots of 41 plants of 11 species (Alopecurus ovatus, Deschampsia alpina, Festuca rubra ssp. richardsonii, putative viviparous hybrids of Poa arctica and Poa pratensis, Poa arctica ssp. arctica, Trisetum spicatum, Coptidium spitsbergense, Ranunculus nivalis, Ranunculuspygmaeus, Ranunculus sulphureus and Taraxacum arcticum) sampled from 10 sites. Both coarse AM endophyte, with hyphae of 5–10 μm width, vesicles and occasional arbuscules, and fine endophyte, consisting of hyphae of 1–3 μm width and sparse arbuscules, were recorded in roots. Coarse AM hyphae, vesicles, arbuscules and fine endophyte hyphae occupied 1.0–30.7, 0.8–18.3, 0.7–11.9 and 0.7–12.8% of the root lengths of colonised plants, respectively. Principal component analysis indicated no associations between the abundances of AM structures in roots and edaphic factors. We conclude that the AM symbiosis is present in grass and forb roots on Spitsbergen

    Five decades of terrestrial and freshwater research at Ny-Ã…lesund, Svalbard

    Get PDF
    For more than five decades, research has been conducted at Ny-Ã…lesund, in Svalbard, Norway, to understand the structure and functioning of High-Arctic ecosystems and the profound impacts on them of environmental change. Terrestrial, freshwater, glacial and marine ecosystems are accessible year-round from Ny-Ã…lesund, providing unique opportunities for interdisciplinary observational and experimental studies along physical, chemical, hydrological and climatic gradients. Here, we synthesize terrestrial and freshwater research at Ny-Ã…lesund and review current knowledge of biodiversity patterns, species population dynamics and interactions, ecosystem processes, biogeochemical cycles and anthropogenic impacts. There is now strong evidence of past and ongoing biotic changes caused by climate change, including negative effects on populations of many taxa and impacts of rain-on-snow events across multiple trophic levels. While species-level characteristics and responses are well understood for macro-organisms, major knowledge gaps exist for microbes, invertebrates and ecosystem-level processes. In order to fill current knowledge gaps, we recommend (1) maintaining monitoring efforts, while establishing a long-term ecosystem-based monitoring programme; (2) gaining a mechanistic understanding of environmental change impacts on processes and linkages in food webs; (3) identifying trophic interactions and cascades across ecosystems; and (4) integrating long-term data on microbial, invertebrate and freshwater communities, along with measurements of carbon and nutrient fluxes among soils, atmosphere, freshwaters and the marine environment. The synthesis here shows that the Ny-Ã…lesund study system has the characteristics needed to fill these gaps in knowledge, thereby enhancing our understanding of High-Arctic ecosystems and their responses to environmental variability and change

    Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua

    No full text
    Seedlings of the annual grass Vulpia ciliata ssp. ambigua were grown in sterilized sand with a dark septate root fungus, Phialophora graminicola, which had been isolated from a natural population of the grass. Tiller number and shoot, root and total biomass of seedlings grown with P. graminicola were enhanced relative to uninoculated control plants in a growth room and a glasshouse experiment. Root length of seedlings grown with P. graminicola was significantly increased, but no effects of the fungus on root diameter, number of root hairs or specific root length were recorded. Root nitrogen content and shoot, root and total phosphorus contents of seedlings grown with the fungus were enhanced, but shoot nitrogen concentration of these plants was reduced. Shoot biomass and specific root length of inoculated plants were positively associated with the number of P. graminicola colonies re-isolated from roots. These data indicate that P. graminicola acts as a beneficial associate of V. ciliata ssp. ambigua seedlings under controlled conditions

    Fine hyphal coils in the liverwort Cephaloziella varians increase in frequency in response to experimental warming in maritime Antarctica

    No full text
    Previous studies have shown changes to the frequencies of hyphal coils and other fungal structures in leafy liverwort tissues across latitudinal transects through Antarctica. Although suggestive of a role of temperature in determining the frequencies of fungal structures, these studies could not exclude the possibility that other factors which alter at lower latitudes—notably liquid water availability—were responsible for the observed patterns of fungal colonisation. Here, in a field experiment in maritime Antarctica, the effects of warming with open top chambers (OTCs) on the frequencies of fungal structures in the leafy liverwort Cephaloziella varians were determined. At five samplings of the experiment taking place 5–10 years after its deployment, OTCs, which increased the summertime temperature of C. varians mats by 1.1 °C, but had no measurable effects on mat moisture concentration, were found to double the frequencies of fine hyphal coils in liverwort tissues. Over the duration of the experiment, the OTCs also significantly increased the frequency of rhizoids on C. varians stems, but had no effects on the frequencies of coarse hyphal coils, dark septate hyphae, hyaline septate hyphae, or hyphal colonisation of rhizoids. Given that C. varians can be recovered from frozen peatbank cores, it is proposed that the abundance of fine hyphal coils in its tissues might be used as a signal of recent climate warming on the Antarctic Peninsula

    Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site

    No full text
    PCR amplification of ITS1-5.8S-ITS2 regions of rDNA followed by cloning was used to determine the fungi present in soil from three sites at Mars Oasis in the southern maritime Antarctic. The soils sampled were adjacent to, or distant from, a meltwater pond, and had moisture contents of 8 %, 3.6 % and 2.5 %. Sequences bearing close similarity to Chytridiales were commonly recorded in clone libraries from the wettest soil. In contrast, sequences from the driest soil matched closely with ectomycorrhizal members of the Helotiales and less closely with Serendipita-like Sebacinales, Tetracladium and ascomycetous black yeasts, such as Rhinociadiella- and Cladophialophora-like fungi and members of the Verrucariales. Sequences loosely similar to Tetracladium, Arrhenia and Omphalina were frequently recovered from the soil of moderate moisture content. our study corroborates research from the Dry Valleys indicating that soil moisture has an important influence on the composition of Antarctic soil fungal communities. (C) 2008 Elsevier Ltd and The British Mycological Societ
    corecore